Geometric inequalities from phase space translations

نویسندگان

  • Stefan Huber
  • Anna Vershynina
چکیده

We establish a quantum version of the classical isoperimetric inequality relating the Fisher information and the entropy power of a quantum state. The key tool is a Fisher information inequality for a state which results from a certain convolution operation: the latter maps a classical probability distribution on phase space and a quantum state to a quantum state. We show that this inequality also gives rise to several related inequalities whose counterparts are well-known in the classical setting: in particular, it implies an entropy power inequality for the mentioned convolution operation as well as the isoperimetric inequality, and establishes concavity of the entropy power along trajectories of the quantum heat diffusion semigroup. As an application, we derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck semigroup, and argue that it implies fast convergence towards the fixed point for a large class of initial states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Massless Spinning Particles and the Berry Phase

The components of the position operator, at a fixed time, for a massless and spinning particle with given helicity λ described in terms of bosonic degrees of freedom have an anomalous commutator proportional to λ. The position operator generates translations in momentum space. We show that a ray-representation for these translations emerges due to the non-commuting components of the position op...

متن کامل

Mass transportation methods in functional inequalities and a new family of sharp constrained Sobolev inequalities

In recent decades, developments in the theory of mass transportation have led to proofs of many sharp functional inequalities. We present some of these results, including ones due to F. Maggi and the author, and discuss related open problems. 1 Sobolev inequalities and mass transportation methods Sobolev inequalities are among the most fundamental tools in analysis and geometry. Determining the...

متن کامل

Tutorial on Reflections in Geometric Algebra

This tutorial focuses on describing the implementation and use of reflections in the geometric algebras of three-dimensional (3D) Euclidean space and in the five-dimensional (5D) conformal model of Euclidean space. In the latter reflections at parallel planes serve to implement translations as well. Combinations of reflections allow to implement all isometric transformations. As a concrete exam...

متن کامل

Quantization of a Class of Piecewise Affine Transformations on the Torus

We present a unified framework for the quantization of a family of discrete dynamical systems of varying degrees of “chaoticity”. The systems to be quantized are piecewise affine maps on the two-torus, viewed as phase space, and include the automorphisms, translations and skew translations. We then treat some discontinuous transformations such as the Baker map and the sawtooth-like maps. Our ap...

متن کامل

Classification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions

Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017